Skip to content

The first 100% file-based Local-First AgenticAI dev "construction yard", with its own memory & context, planning, writing and reviewing your code in safe sandboxes on your own machine.

License

Notifications You must be signed in to change notification settings

illdynamics/qonqrete

Repository files navigation

QonQrete - Secure AI Construction Loop System

License: AGPL v3 Repo Views

Splash

QonQrete is a Secure AI Construction Loop System, using a Multi-Agent Pipeline Orchestrator in a Sandbox environment with YAML Configuration. In short: it spawns 3 AI agents in a sandbox/container and makes them work together on tasks. It can run with a hard requirement for user approval between steps, or in a fully autonomous mode where it keeps running until the user decides to stop it.

QonQrete is a multi-agent orchestration system designed for secure, observable, and human-in-the-loop software construction. It operates on the principle of a secure build environment (Qage), managed by a host-level orchestrator (Qrane).

This architecture ensures that AI-generated code and processes cannot affect the host system, providing a robust framework for autonomous and semi-autonomous development.

Version

Version: v0.9.0-beta (See VERSION file for the canonical version).

Note on TUI Mode and Agent Testing:

The Text-based User Interface (TUI) mode is currently under active development and may still have bugs. While the agent setup is dynamic, extensive testing is still required.

We welcome community contributions! If you encounter any issues or have suggestions, please report them. Your feedback is invaluable in helping us improve the system.


What's New in v0.9.0-beta

πŸš€ TasqLeveler - Automatic Tasq Enhancement

A new agent that supercharges your tasq.md automatically on Cycle 1:

Enhancement Impact
πŸ“¦ Dependency Graph Prevents circular imports
🎯 Golden Path Tests Defines success explicitly
πŸ§ͺ Mock Infrastructure Test without real services
πŸ“‹ Success Criteria Clear pass/fail
⏱️ Phase Priority Better token allocation

+15-20% improvement in output quality!

# config.yaml - TasqLeveler uses instruqtor's config by default
agents:
  tasqleveler:
    provider: openai
    model: gpt-4.1-mini

πŸ”§ Universal File Rule (s00permode)

One simple rule for ALL cycles:

  • πŸ“ File EXISTS? β†’ MODIFY/EXTEND it (never recreate)
  • πŸ“„ File MISSING? β†’ CREATE it (new modules welcome!)

No more rebuild-from-scratch bugs on multi-cycle builds!


What's New in v0.8.0-beta

πŸŒ€ Qontrabender - The Cache Bender

A new policy-driven hybrid caching agent with Variable Fidelity:

  • Policy-Based Configuration: All behavior controlled via caching_policy.yaml
  • 6 Operational Modes: local_fast, local_smart, cyber_bedrock, cyber_aggressive, paranoid_mincloud, debug_repro
  • Variable Fidelity: Intelligently mixes full code (MEAT) + skeletons (BONES)
  • Schema Validation: Bad YAML can't brick your flow
  • Improved Volatile Detection: Cycle-based, diff-based, git diff, mtime fallback
# Select mode in config.yaml
agents:
  qontrabender:
    policy_file: "./caching_policy.yaml"
    mode: "local_smart"

See QONTRABENDER.md for full documentation.


The Triple-Core Memory System

QonQrete now features a Triple-Core Memory System:

Agent Role Output
Qompressor Skeletonizer bloq.d/ - AST-stripped code structures
Qontextor Symbol Mapper qontext.d/ - Semantic YAML maps
Qontrabender Cache Bender qache.d/ - Policy-driven cache payloads

The Data Lake Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    THE DATA LAKE (Local)                                β”‚
β”‚                                                                         β”‚
β”‚   qodeyard/ (MEAT)           bloq.d/ (BONES)        qontext.d/ (SOUL)   β”‚
β”‚   Full source code           AST skeletons          Semantic maps       β”‚
β”‚                                                                         β”‚
β”‚             β”‚                        β”‚                      β”‚           β”‚
β”‚             β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜           β”‚
β”‚                         β–Ό                                               β”‚
β”‚              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                                  β”‚
β”‚              β”‚    QONTRABENDER       β”‚ ← Policy-driven compositor       β”‚
β”‚              β”‚   caching_policy.yaml β”‚                                  β”‚
β”‚              β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                  β”‚
β”‚                         β–Ό                                               β”‚
β”‚                   qache.d/ (Cache Ledger)                               β”‚
β”‚                   └─ Variable fidelity payloads                         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Performance Metrics

Scenario: Medium-sized project (50 files, ~10,000 lines of code)

Metric Old Approach Triple-Core Improvement
Context Sent 100,000 Tokens ~4,000 Tokens 96% Reduction
Indexing Cost High (AI-based) Zero (Local) ∞ Cheaper
Cost per Run ~$0.25 (GPT-4o) ~$0.01 (GPT-4o) 25x Cheaper
Cache Reuse None Hash-based dedup Near-zero churn

Core Principles

  1. Isolation by Design: All agent execution occurs within the Qage, a Docker container that acts as a secure sandbox.
  2. Configuration-Driven: Agent models, modes, and policies defined in YAML.
  3. File-Based Communication: Agents communicate via markdown files, creating transparent audit trails.
  4. Human-in-the-Loop Control: CheQpoints pause for user review. Can be configured for autonomous mode.
  5. Local Sovereignty: Keep intelligence local with policy-driven caching.

Architecture Overview

  • qrane/: The Qrane orchestrator and CLI
  • worqer/: AI agent scripts (tasqLeveler, instruQtor, construQtor, inspeQtor, qompressor, qontextor, qontrabender)
  • worqspace/: Shared data plane with configuration and generated artifacts

The Workflow CyQle

  1. Enhance (tasqLeveler): Cycle 1 only - Supercharges tasq with golden paths and mocks
  2. Plan (instruQtor): Reads the tasQ and creates briQ files with detailed plans
  3. Execute (construQtor): Processes each briQ and generates code in qodeyard/
  4. Review (inspeQtor): Reviews generated code and produces reQap with assessment
  5. CheQpoint (gateQeeper): Pauses for user command to proceed

System Requirements

Docker (Required)

Docker Desktop Users: Grant Docker permission to access the project directory via Settings > Resources > File Sharing.

Microsandbox (Optional)

Lightweight alternative to Docker. See Microsandbox repository.


Getting Started

See QUICKSTART.md for the full guide.

API Keys

Export keys for your AI providers:

export OPENAI_API_KEY='your-key'
export GOOGLE_API_KEY='your-key'
export ANTHROPIC_API_KEY='your-key'
export DEEPSEEK_API_KEY='your-key'

Initialize

./qonqrete.sh init

Run

# With TUI
./qonqrete.sh run --tui --mode security

# Autonomous mode
./qonqrete.sh run --auto --briq-sensitivity 2

# User-gated mode
./qonqrete.sh run --user

Clean

./qonqrete.sh clean

Configuration

config.yaml

agents:
  tasqleveler:
    provider: openai
    model: gpt-4.1-mini  # Runs once on Cycle 1
    
  instruqtor:
    provider: openai
    model: gpt-4.1-mini

  construqtor:
    provider: gemini
    model: gemini-2.5-pro

  inspeqtor:
    provider: openai
    model: gpt-4.1

  qontextor:
    provider: local
    model: qontextor
    local_mode: complex

  qompressor:
    provider: local
    model: qompressor

  qontrabender:
    provider: local
    model: qontrabender
    policy_file: "./caching_policy.yaml"
    mode: local_smart

options:
  use_qompressor: true
  use_qontextor: true
  use_qontrabender: true
  cheqpoint: false
  auto_cycle_limit: 4

Qontrabender Modes

Mode Description
local_fast Ultra-fast, skeleton only
local_smart Variable fidelity, balanced (default)
cyber_bedrock Remote cache for stable bedrock
cyber_aggressive Aggressive remote caching
paranoid_mincloud Minimal cloud exposure
debug_repro Maximum audit logging

Documentation


License

QonQrete is licensed under the GNU Affero General Public License v3.0 (AGPL-3.0). See the LICENSE file for full text.

Scarf

About

The first 100% file-based Local-First AgenticAI dev "construction yard", with its own memory & context, planning, writing and reviewing your code in safe sandboxes on your own machine.

Topics

Resources

License

Stars

Watchers

Forks